Pendekatan Big Data dalam Mendeteksi Deviasi Perilaku Seksual Remaja pada Platform Media Sosial

Authors

  • Yanti Yusman yanti Universitas Pembangunan Panca Budi, Medan
  • Noor Anida Zaria Mohd Noor Sultan Idris Education University

Keywords:

Big Data, Deviasi Seksual, Remaja, Media Sosial, Deteksi Dini, NLP, Text Mining, Machine Learning

Abstract

Fenomena deviasi perilaku seksual di kalangan remaja semakin marak terjadi dan kerap diekspresikan melalui platform media sosial. Hal ini menimbulkan kekhawatiran dalam konteks kesehatan mental, moral, serta sosial. Penelitian ini bertujuan untuk mengkaji bagaimana pendekatan big data dapat digunakan untuk mendeteksi indikasi penyimpangan perilaku seksual remaja secara dini melalui analisis terhadap percakapan, unggahan, dan interaksi publik di media sosial. Dengan memanfaatkan teknik text mining, natural language processing (NLP), serta machine learning, data dalam skala besar dari media sosial dianalisis untuk mengidentifikasi pola, frekuensi kata kunci, dan sentimen yang berhubungan dengan perilaku seksual menyimpang. Hasil awal menunjukkan bahwa algoritma pembelajaran mesin mampu mengklasifikasikan data dengan akurasi tinggi dalam mendeteksi tanda-tanda deviasi, serta dapat menjadi alat bantu strategis dalam pencegahan dan edukasi perilaku sehat di kalangan remaja. Studi ini memberikan kontribusi terhadap pengembangan sistem deteksi dini berbasis teknologi serta sebagai landasan intervensi kebijakan yang lebih efektif di ranah pendidikan dan kesehatan masyarakat.

References

Anzani, A., Siboni, L., Lindley, L., Paz Galupo, M., & Prunas, A. (2024). From Abstinence to Deviance: Sexual Stereotypes Associated With Transgender and Nonbinary Individuals. Sexuality Research and Social Policy, 21(1), 27–43. https://doi.org/10.1007/s13178-023-00842-y

Astuti, L. W., & Sari, Y. (2023). Code-Mixed Sentiment Analysis using Transformer for Twitter Social Media Data. International Journal of Advanced Computer Science and Applications, 14(10), 498–504. https://doi.org/10.14569/IJACSA.2023.0141053

Chantika, Y., Fitria, L., & Sefriani, R. (2023). Pemahaman Siswa Terhadap Penyimpangan Perilaku Seksual Dikalangan Remaja SMK. Diajar Jurnal Pendidikan Dan Pembelajaran, 2(4), 464–471. https://doi.org/10.54259/diajar.v2i4.1989

Cioban, S., Laz?r, A. R., Bacter, C., & Hatos, A. (2021). Adolescent Deviance and Cyber-Deviance. A Systematic Literature Review. In Frontiers in Psychology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fpsyg.2021.748006

Hattingh, M. (2022). Factors mediating social media-induced fear of missing out (FoMO) and social media fatigue: A comparative study among Instagram and Snapchat users. Technological Forecasting and Social Change, 185. https://doi.org/10.1016/j.techfore.2022.122099

Jain, A., & Krishnamurthy, V. (2025). Interacting Large Language Model Agents Bayesian Social Learning Based Interpretable Models. IEEE Access, 13, 25465–25504. https://doi.org/10.1109/ACCESS.2025.3538599

Luchinkina, A. I., Yudeeva, T. V, Zhikhareva, L. V, Luchinkina, I. S., & Andreyev, A. S. (2024). Adolescent Deviance in Online Communities. Russian Psychological Journal, 21(4), 34–44. https://doi.org/10.21702/zdz9bs08

Mahmoud, A. B. (2024). Analysing the public’s beliefs, emotions and sentiments towards Metaverse workplace: A big-data qualitative inquiry. Acta Psychologica, 250. https://doi.org/10.1016/j.actpsy.2024.104498

Panagiotidis, K., Tsipas, N., Saridou, T., & Veglis, A. (2020). A participatory journalism management platform: Design, implementation and evaluation. Social Sciences, 9(2). https://doi.org/10.3390/socsci9020021

Prüfer, J., & Schottmüller, C. (2021a). Competing With Big Data*. Journal of Industrial Economics, 69(4), 967–1008. https://doi.org/10.1111/joie.12259

Prüfer, J., & Schottmüller, C. (2021b). Competing With Big Data*. Journal of Industrial Economics, 69(4), 967–1008. https://doi.org/10.1111/joie.12259

Puspitasari, I. M., Garnisa, I. T., Sinuraya, R. K., & Witriani, W. (2020). Perceptions, knowledge, and attitude toward mental health disorders and their treatment among students in an Indonesian University. Psychology Research and Behavior Management, 13, 845–854. https://doi.org/10.2147/PRBM.S274337

Qayyum, H., Ikram, M., Zhao, B. Z. H., Wood, I. D., Kourtellis, N., & Kaafar, M. A. (2023). Exploring the Distinctive Tweeting Patterns of Toxic Twitter Users. In J. He, T. Palpanas, X. Hu, A. Cuzzocrea, D. Dou, D. Slezak, W. Wang, A. Gruca, L. J.C.-W., & R. Agrawal (Eds.), Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023 (pp. 3624–3633). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/BigData59044.2023.10386402

Ravindran, S. (2021). A Privacy-Preserving Feature Extraction Method for Big Data Analytics Based on Data-Independent Reusable Projection. Research Anthology on Privatizing and Securing Data, 386–405. https://doi.org/10.4018/978-1-7998-8954-0.ch018

Sari, I. C., & Ruldeviyani, Y. (2020). Sentiment Analysis of the Covid-19 Virus Infection in Indonesian Public Transportation on Twitter Data: A Case Study of Commuter Line Passengers. 2020 International Workshop on Big Data and Information Security, IWBIS 2020, 23–28. https://doi.org/10.1109/IWBIS50925.2020.9255531

Setyowati, D. L., Setyaningsih, Y., Suryawati, C., & Lestantyo, D. (2024). Assessment of Risky Riding Behaviors Using the Motorcycle Rider Behavior Questionnaire (MRBQ) Among University Students. The Open Public Health Journal, 17(1). https://doi.org/10.2174/0118749445281252240316204804

Vergani, M., Diallo, T., & O’Brien, K. (2023). Measuring the Potential for Hateful Behaviours: Development and Validation of the Hate Behaviours Scale (HBS). Terrorism and Political Violence. https://doi.org/10.1080/09546553.2023.2283565

von Ziegler, L. (2021). Big behavior: challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology, 46(1), 33–44. https://doi.org/10.1038/s41386-020-0751-7

Wang, C. (2020). Corporate social responsibility, Green supply chain management and firm performance: The moderating role of big-data analytics capability. Research in Transportation Business and Management, 37. https://doi.org/10.1016/j.rtbm.2020.100557

Weber, D. (2023). Mental Health and Social Media. An Explorative Mediation Analysis about the Relationship between Social Media Use, Value Concepts, Fear of Missing out, Sociodemographic Variables, and Mental Health. Journal of Consumer Health on the Internet, 27(4), 393–411. https://doi.org/10.1080/15398285.2023.2276399

Published

2025-07-06